

FLUSH-MOUNTED DIELECTRIC-LOADED AXIAL SLOT ON CIRCULAR CYLINDER

J. H. Richmond

The Ohio State University

ElectroScience Laboratory

Department of Electrical Engineering Columbus, Ohio 43212

TECHNICAL REPORT 2902-17

Grant Number NGL 36-008-138

June 1974

SECENTED NASA STI FACILITY BRANCH

(NASA-CR-138752) FLUSH-MOUNTED
DIELECTRIC-LOADED AXIAL SLOT ON CIRCULAR
CYLINDER (Chio State Univ.) 34 p HC
\$4.75 CSCL 20N

N74-27619

Unclas

G3/07 42480

National Aeronautics and Space Administration Langley Research Center Hampton, Va. 23365

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

FLUSH-MOUNTED DIELECTRIC-LOADED AXIAL SLOT ON CIRCULAR CYLINDER

J. H. Richmond

TECHNICAL REPORT 2902-17

Grant Number NGL 36-008-138

June 1974

National Aeronautics and Space Administration Langley Research Center Hampton, Va. 23365

ABSTRACT

This report presents the theory, computer program and numerical results for an axial slot antenna on a circular cylinder.

CONTENTS

	Page
I. INTRODUCTION	1
II. THEORY	1
III. NUMERICAL RESULTS	7
IV. SUMMARY AND CONCLUSIONS	13
REFERENCES	14
APPENDIX I - THE MAIN COMPUTER PROGRAM	15
APPENDIX II - SUBROUTINE BESSI	20
APPENDIX III - SUBROUTINE SQROT	29
ACKNOWLEDGMENT	30

I. INTRODUCTION

We consider an axial slot antenna on a perfectly conducting circular cylinder. The cylinder is partially coated with a dielectric layer, and the antenna radiates through this flush-mounted window. The motivation for this study is to determine the effects of a high-temperature dielectric layer on the performance of antennas mounted on a space shuttle.

For an axial slot antenna on a circular cylinder completely coated with a dielectric layer, the admittance and patterns have been investigated by Knop[1], Fante[2], and Croswell, Westrick and Knop[3]. Our analysis has some similarity to that of Billingsley and Sinclair[4] for scattering by circular-sector cylinders.

The following sections define the problem and present the theory, computer programs and some numerical results.

II. THEORY

Consider an axial slot antenna on a perfectly conducting circular cylinder as illustrated in Fig. 1. The inner aperture has radius "a" and

Fig. 1. An axial-slot antenna radiates through a flush-mounted dielectric window in a conducting circular cylinder.

half-angle ϕ_a . The outer aperture has radius b and half-angle ϕ_C . The exterior medium is free space. The inner slot radiates through a flush-mounted homogeneous dielectric window with permittivity ϵ_l , permeability μ_l , inner radius a, outer radius b and half-angle ϕ_b . The metallic flange prevents the dielectric window from falling out. This cylindrical structure has infinite length, and its axis coincides with the z axis. We consider a time-harmonic excitation with the time dependence $e^{j\omega t}$ understood, and the fields have no z dependence. This report considers the TE polarization in which the non-zero field components are E_ρ , E_φ and H_Z . Given an even field distribution E_φ over the inner aperture, the objective is to determine the aperture admittance, gain and far-field pattern of this antenna. Our solution employs cylindrical-mode expansions and Galerkin's method.

The field in region I (the dielectric window) is

(1)
$$E_{\rho}^{I} = \frac{j\eta_{1}}{k_{1}\rho} \sum_{k} v \left[c_{k} J_{\nu}(\rho) + d_{k} N_{\nu}(\rho)\right] \sin\nu\phi$$

(2)
$$E_{\phi}^{I} = j\eta_{1} \sum_{k} \left[c_{k} J_{\nu}^{\dagger}(\rho) + d_{k} N_{\nu}^{\dagger}(\rho) \right] \cos \nu \phi$$

(3)
$$H_{z}^{I} = \sum_{k} \left[c_{k} J_{v}(\rho) + d_{k} N_{v}(\rho) \right] \cos v\phi$$

$$(4) k_{1} = \omega \sqrt{\mu_{1} \epsilon_{1}}$$

(5)
$$\eta_1 = \sqrt{\mu_1/\epsilon_1}$$

(6)
$$v = k\pi/\phi_b$$

where the integer k runs from zero to infinity and (ρ,ϕ,z) are the cylindrical coordinates. (In this report the symbols $J_{\nu}(\rho)$ and $N_{\nu}(\rho)$ denote the Bessel and Neumann functions with order ν and argument $k_1\rho$.) This field satisfies the source-free version of Maxwell's equations in region I. From Eqs. (1) and (6), tangential E vanishes at the perfectly conducting surfaces at $\phi=\pm\phi_{D}$. The expansion constants c_{K} and d_{K} are to be determined from the boundary conditions.

The voltage across the inner aperture is

(7)
$$V = 2a \int_{0}^{\phi} a E d\phi$$

where E denotes $E_{\varphi}(a,\varphi)$. (We assume the aperture field E is a specified even function of φ .) The external admittance of the inner aperture is

(8)
$$Y = \frac{2a}{VV^*} \int_0^{\phi} a E^* H_z^{I}(a,\phi) d\phi$$
.

The boundary condition at $\rho = a$ is

(9)
$$E_{\phi}^{I} = \begin{cases} E & \text{for } 0 < \phi < \phi_{a} \\ 0 & \text{for } \phi_{a} < \phi < \phi_{b} \end{cases}$$

From Eqs. (2) and (9) with Fourier analysis,

(10)
$$j\eta_1 \phi_b [c_k J_v'(a) + d_k N_v'(a)] = e_k G_k$$

(11)
$$G_{k} = \int_{0}^{\phi_{a}} E \cos \phi d\phi$$

where $e_0 = 1$ and $e_k = 2$ for $k = 1, 2, 3 \cdots$

From Eqs. (3) and (8), the external admittance (per unit length of cylinder) of the inner aperture is

(12)
$$Y = \frac{2a}{VV^{*}} \sum_{k} [c_{k} J_{v}(a) + d_{k} N_{v}(a)] G_{k}^{*}.$$

The field in region II (the exterior free-space region) is

(13)
$$E_{\rho}^{II} = \frac{j\eta_{0}}{k_{0}\rho} \sum_{i} i a_{i} H_{i}(\rho) \sin i\phi$$

(14)
$$E_{\phi}^{II} = j\eta_{0} \sum_{i} a_{i} H'_{i}(\rho) \cos i\phi$$

(15)
$$H_Z^{II} = \sum_{i} a_i H_i(\rho) \cos i\phi$$

(16)
$$k_0 = \omega \sqrt{\mu_0 \epsilon_0}$$

(17)
$$\eta_0 = \sqrt{\mu_0/\epsilon_0}$$

where the integer i runs from zero to infinity. (In this report the symbol $H_i(\rho)$ denotes the Hankel function with order i and argument $k_0\rho$ and the superscript (2) is understood. The argument $k_1\rho$ will not be encountered with the Hankel function.) This field satisfies the radiation conditions and the source-free version of Maxwell's equations.

To complete the solution, it remains only to enforce the boundary conditions at $\rho=b$. The rigorous solution involves an infinite system of simultaneous linear equations. We desire an accurate approximation involving a finite system of simultaneous linear equations. To develop a solution of this type, we expand the field in the outer aperture (at $\rho=b$) as follows:

(18)
$$E_{\phi} = \sum_{n} b_{n} \cos(n\pi\phi/\phi_{c}) \qquad \text{for } 0 < \phi < \phi_{c}$$

where n runs from zero to N. If the constants b_n were known, the remaining constants $(a_i,\,c_k$ and $d_k)$ could be determined. In this sense the b_n are independent unknowns, and the others are dependent. When the simultaneous linear equations are written as a matrix equation, the square matrix will be symmetric if the b_n are chosen as the independent quantities.

From Eq. (2) and the boundary condition on E_{ϕ}^{I} at ρ = b,

(19)
$$j\eta_{1} \sum_{k} [c_{k} J_{\nu}'(b) + d_{k} N_{\nu}'(b)] \cos\nu\phi = \begin{cases} E_{\phi} & \text{for } 0 < \phi < \phi_{c} \\ 0 & \text{for } \phi_{c} < \phi < \phi_{b} \end{cases}$$

where E is defined by Eq. (18). Multiplying both sides of Eq. (19) by $\cos\nu\phi$ and integrating over the range $0<\phi<\phi_b$ yields

(20)
$$j_{\eta_1} \phi_b [c_k J_v'(b) + d_k N_v'(b)] = e_k \sum_n b_n F_{kn}$$

(21)
$$F_{kn} = \int_0^{\phi_C} \cos(k\pi\phi/\phi_D) \cos(n\pi\phi/\phi_C) d\phi .$$

From Eqs. (10) and (20),

(22)
$$c_k = P_k \left[G_k N_v'(b) - N_v'(a) \sum_n b_n F_{kn} \right]$$

(23)
$$d_k = P_k \left[-G_k J_v'(b) + J_v'(a) \sum_{n} b_n F_{kn} \right]$$

(24)
$$P_{k} = \frac{e_{k}}{j_{\eta_{1}} \phi_{b}[J_{v}'(a) N_{v}'(b) - J_{v}'(b) N_{v}'(a)]}$$

From Eq. (14) and the boundary condition on E_{ϕ}^{II} at $\rho = b$,

(25)
$$j\eta_0 \sum_{i} a_i H_i^!(b) \cos i\phi = \begin{cases} E_{\phi} & \text{for } 0 < \phi < \phi_C \\ 0 & \text{for } \phi_C < \phi < \pi \end{cases}$$

where E_{φ} is defined by Eq. (18). Multiplying both sides of Eq. (25) by cos $i\varphi$ and integrating over the range 0 < φ < π yields:

(26)
$$a_{i} = \frac{e_{i}}{j\pi\eta_{0}H'_{i}(b)} \sum_{n}^{\infty} b_{n} G_{in}$$

(27)
$$G_{in} = \int_{0}^{\phi_{C}} \cos(i\phi) \cos(n\pi\phi/\phi_{C}) d\phi.$$

Equations (22)-(26) show explicitly that a knowledge of the constants b_n is sufficient to determine all the other constants.

At this point we have used the boundary conditions on E_{φ} to relate a_i , c_k and d_k to b_n . The next step is to use the boundary condition on H_Z to generate a system of simultaneous linear equations for the constants b_n . From Eqs. (3) and (15) and continuity of tangential H across the outer aperture (at ρ = b):

(28)
$$\sum_{i} a_{i} H_{i}(b) \cos i\phi = \sum_{k} [c_{k} J_{v}(b) + d_{k} N_{v}(b)] \cos v\phi$$

where ϕ ranges from zero to ϕ_C . In Eq. (28), multiplying both sides by $\cos\left(m\pi\phi/\phi_C\right)$ and integrating from ϕ = 0 to ϕ = ϕ_C yields

(29)
$$\sum_{i} a_{i} H_{i}(b) G_{im} = \sum_{k} [c_{k} J_{v}(b) + d_{k} N_{v}(b)] F_{km}.$$

In matching H_Z across the aperture, we selected the same weighting function $\cos\left(\text{mm}\phi/\phi_C\right)$ also used as a basis function in Eq. (18). This is the distinctive feature of Galerkin's method. If Eqs. (22), (23) and (26) are used to eliminate a_i , c_k and d_k , Eq. (29) yields:

(30)
$$\sum_{n} Z_{mn} b_{n} = V_{m} \text{ with } m = 0, 1, 2, \dots N$$

(31)
$$V_{m} = \frac{2 J \eta_{1} \phi_{b}}{k_{1} b \phi_{c}} \sum_{k} P_{k} G_{k} F_{km}$$

(32)
$$Z_{mn} = \frac{\phi_b}{\phi_c} \left[\frac{\eta_1}{\eta_0} \sum_{i} \frac{e_i H_i(b) G_{im} G_{in}}{H_i^{\dagger}(b)} + \frac{\pi}{\phi_b} \sum_{k} e_k R_k F_{km} F_{kn} \right]$$

(33)
$$R_{k} = \frac{J_{v}(b) N_{v}'(a) - J_{v}'(a) N_{v}(b)}{J_{v}'(a) N_{v}'(b) - J_{v}'(b) N_{v}'(a)}.$$

Equation (30) is recognized as a system of simultaneous linear equations. In the summation, n runs from zero to N. Equation (30) can also be written as a matrix equation. The symmetry of the square matrix Z_{mn} is obvious in Eq. (32).

The matrix equation is solved with a digital computer to obtain numerical values for b_n . Then Eqs. (22), (23) and (26) are employed to determine c_k , d_k and a_j . The aperture admittance is obtained from Eq. (12). The far-field pattern is obtained from Eq. (15) as follows:

(34)
$$H_{z} = e^{-jk\rho} \sqrt{\frac{2j}{\pi k\rho}} \sum_{i} a_{i} j^{i} \cos i\phi.$$

The power gain is calculated as follows:

(35)
$$G_p(\phi) = \frac{2\pi\rho\eta_0 |H_z(\rho,\phi)|^2}{VV*G}$$

where the aperture voltage V is given by Eq. (7) and the aperture conductance G is the real part of Y in Eq. (12).

III. NUMERICAL RESULTS

Figures 2-6 illustrate the far-field patterns of an axial slot antenna radiating through a lossless window with dielectric constant of 1, 1.2, 2, 3 and 4. Figures 2 and 3 compare the calculated patterns with experimental measurements performed at NASA Langley. Measurements are not available for the other cases. In this sequence of figures all parameters of the slot, window and cylinder are fixed except the dielectric constant. The electric field distribution is uniform across the inner aperture.

All the patterns are reasonably smooth except in Fig. 5 where the pattern breaks up into many lobes with deep nulls. With a dielectric constant of 3, this anomalous type of pattern is observed when the aperture half-angle is ϕ_b = 13.8, 14.8, 15.8, 16.8°, etc. When ϕ_b differs from one of these critical angles by more than 0.1 degrees, the pattern becomes smooth again. At each critical angle, the aperture width is an integral number of wavelengths for the lowest-order surface wave. This surfacewave resonance phenomenon is less pronounced with a dielectric constant of 1.2 but is observed when ϕ_b = 14.6°. The effect may be reduced with a lossy dielectric window or by reducing the reflection coefficient at the edges of the aperture.

In these figures, the calculations are based on a two-dimensional model with an infinitely long axial slot. A case of greater interest is a half-wave axial slot in a long cylinder. The effects of surface-wave resonance will be reduced with a slot of finite length.

In generating the data for Fig. 5, the execution time was 50 seconds on a Datacraft 6024/3 computer. The solution involved a system of 20 simultaneous linear equations (N = 19 in Eqs. (18) and (30)). The infinite series with index i (in Eqs. (32) and (34)) were truncated after 148 terms, and the series with index k (in Eqs. (12), (31) and (32)) were truncated after 20 terms. The calculated aperture admittance was 0.372 + j 0.122 mhos/wavelength. Identical results were obtained with N = 18 and 19, but N = 15 proved inadequate.

Fig. 2. Far-field pattern with ϵ_r = 1.

Fig. 3. Far-field pattern with ϵ_{γ} = 1.2.

Fig. 4. Far-field pattern with $\epsilon_r = 2$.

Fig. 5. Far-field pattern with ϵ_{r} = 3.

Fig. 6. Far-field pattern with ε_r = 4.

IV. SUMMARY AND CONCLUSIONS

This report develops the theoretical formulation for a TE axial slot antenna radiating through a dielectric window in a circular cylinder. Numerical results are presented for the far-field patterns, and it is noted that the calculations show excellent agreement with experimental measurements. The computer program is presented in the Appendices.

The solution is based on Galerkin's method. Simultaneous linear equations are generated in which the unknown quantities are the coefficients in a Fourier-series expansion for the electric field in the outer aperture. The formulation is rapidly convergent, and the computer program is quite efficient.

REFERENCES

- 1. Knop, C.M., "External Admittance of an Axial Slot on a Dielectric Coated Metal Cylinder," Radio Science, Vol. 3, No. 8, August 1968, pp. 803-817.
- 2. Fante, R.L., "Calculation of the Admittance, Isolation, and Radiation Pattern of Slots on an Infinite Cylinder Covered by an Inhomogeneous Lossy Plasma," Radio Science, Vol. 6, No. 3, March 1971, pp. 421-428.
- 3. Croswell, W.F., Westrick, G.C. and Knop, C.M., "Computations of the Aperture Admittance of an Axial Slot on a Dielectric Coated Cylinder," IEEE Trans., Vol. AP-20, January 1972, pp. 89-92.
- 4. Billingsley, J.B. and Sinclair, G., "Numerical Solutions to Electromagnetic Scattering from Strips, Finite Wedges, and Notched Circular Cylinders," Canadian Journal of Physics, Vol. 44, 1966, pp. 3217-3225.
- 5. Goldstein, M. and Thaler, R.M., "Recurrence Techniques for the Calculation of Bessel Functions," MTAC (Mathematics of Computation) Vol. 13, April, 1959, pp. 102-108.
- 6. Goldstein, M. and Thaler, R.M., "Bessel Functions for Large Arguments," MTAC (Mathematics of Computation) Vol. 12, January 1958, pp. 18-26.

APPENDIX I THE MAIN COMPUTER PROGRAM

The MAIN computer program is listed in Fig. 7. In this program $\mathsf{E}_{\pmb{\phi}}$ is uniform across the inner aperture and the dielectric window is lossless. Following the format statements, the dimensions are indicated for the subscripted quantities as follows:

IDC. dimension of B and V

IDH dimension of A, BHR, BB, YY, BP, YP, SNC and SGA

dimension of C, D, SGC, RBES, BEN, AJJ, etc IDJ

IDZ dimension of Z.

The input data are programmed at statement 20 with the following definitions:

inner radius a/λ AL

BL outer radius b/λ

dielectric constant ϵ_1/ϵ_0

DPH angular increment for far-field pattern calculations

PHA φ_a in degrees

PHB

 ϕ_b in degrees ϕ_c in degrees PHC

where λ denotes the wavelength in free space.

At statement 30, subroutine BESSI is called for the Bessel and Neumann functions and their derivatives. This subroutine also determines the number of terms (denoted by KK) to be employed in the summations on k in Eqs. (12), (31) and (32). The last call to BESSI determines the number of terms (denoted by II) to be employed in the summations on i in Eqs. (32) and (34). If KK is equal to IDJ, the dimension IDJ should be increased. If II is equal to IDH, the dimension IDH should be increased. II should exceed IMIN, and KK should exceed KMIN. NN denotes the number of simultaneous linear equations and the number of terms to be employed in the summations on n in Eqs. (22), (23) and (26). NN should exceed NMIN.

For a uniform aperture distribution with $V \approx 1$ volt, Eqs. (7) and (11) yield

(36)
$$G_{k} = \frac{\sin(\nu \phi_{a})}{2a\nu \phi_{a}}$$

In the computer program, SGA(K) denotes $2aG_k$. Subroutine GLJ calculates F_{kn}/ϕ_C where F_{kn} is defined by Eq. (21). Subroutine GNJ calculates

 G_{in}/ϕ_C where G_{in} is defined by Eq. (27). Some of the symbols used in the program are defined as follows:

```
Α
           ai
           b<sub>n</sub>/k<sub>o</sub>
В
C
           c_k
D
           \mathbf{d}_{\mathbf{k}}
٧
AK
           k<sub>o</sub>a
ΒK
           k_0b
AK1
           k<sub>1</sub>a
BK1
           k_1b
BEN
           denominator in Eq. (33)
          H_{i}(b)/H_{i}(b)
BHR
ETA
          \eta_o
ETA1
           \eta_1
GNU
RBES
           (\sin v\phi_c)/(v\phi_c)
SGC
           (\sin i\phi_c)/(i\phi_c)
SNC
SJN
           first summation in Eq. (32)
ŞJL
           second summation in Eq. (32)
Y11
           aperture admittance Y
Z(L)
```

In statement 130, subroutine SQROT is called to solve the system of simultaneous linear equations. Then the expansion coefficients a_i , c_k and d_k are calculated from Eqs. (22), (23) and (26). The aperture admittance is calculated at statement 360 with Eq. (12). Finally, the gain is calculated with Eqs. (34) and (35).

```
TE AXIAL SLOT IN PERFECTLY CONDUCTING CIRCULAR CYLINDER.
                                                                                 0001
C
                                                                                 0002
      SLOT RADIATES THROUGH DIFLECTRIC WINDOW.
C
      PROGRAM BY JACK H RICHMOND, OHIO STATE UNIVERSITY.
                                                                                 0003
      COMPLEX V(30), B(30), Z(465), C(150), D(150), A(400), BHR(400)
                                                                                 0004
                                                                                 0005
      COMPLEX CQ.HZ.SUMN.SUL.SJN.Y11
      DIMENSION BB(400), YY(400), BP(400), YP(400), SNC(400), SGA(400)
                                                                                 0006
      DIMENSION SGC(150), RBES(150), BEN(150)
                                                                                 0007
      DIMENSION AJJ(150), AYY(150), AJP(150), AYP(150)
                                                                                 0008
      DIMENSION BJ1(150),BY1(150),RJP1(150),BYP1(150)
                                                                                 0009
                                                                                 0010
      EQUIVALENCE (B, V), (BB, SNC), (YY, SGA), (BJ1, SGC), (BY1, RBES)
                                                                                 0011
      DATA ETA, PI, TP/376, 727, 3, 14159, 6, 28318/
                                                                                 0012
      FORMAT(1X,8F15.6)
  2
                                                                                 0013
      FURMAT(1X, 12110)
                                                                                 0014
      FORMAT(1HO)
                                                                                 0015
      100=30
                                                                                 0016
      10H=400
                                                                                 0017
      IDJ=150
                                                                                 0018
      1DZ=465
                                                                                 0019
      AL=18.7325
                                                                                 0020
      BL=19.05
                                                                                 0021
      ER=3.
                                                                                 0022
      DPH=2.
                                                                                 0023
      PHA=0.54
                                                                                 0024
      PHB=14.8
                                                                                 0025
      PHC=PHB
                                                                                 0026
       IF (PHA.GT. PHB) PHA=PHB
                                                                                 0027
       IF(PHC.GT.PHB)PHC=PHB
      N=.5+(SORT(1.+8.*IDZ)-1.)/2.
                                                                                 0028
                                                                                 0029
       IF(N.LT.IDC)IDC=N
                                                                                 0030
      NN=1DC
                                                                                 0031
      SOR=SORT(ER)
                                                                                 0032
       ETA1=ETA/SQR
                                                                                 0033
      TL =BL-AL
      WRITE(6,2)AL, BL, TL, ER, PHA, PHB, PHC
                                                                                 0034
                                                                                 0035
      WRITE(6,5)
       AK=TP*AL
                                                                                  0036
                                                                                 0037
       BK=TP#BL
       AK1=AK*SOR
                                                                                 0038
                                                                                 0039
       BK1=BK#SQR
       PHAR=.0174533*PHA
                                                                                  0040
                                                                                 0041
       PHBR=.0174533*PHB
                                                                                  0042
       PHCR=.0174533*PHC
                                                                                  0043
       GNU=PI/PHBR
  30 CALL BESSI(AK1.GNU.AJJ.AYY.AJP.AYP.IDJ.IDH.KK .BB.YY)
                                                                                  0044
       CALL BESSI(BK1,GNU,BJ1,BY1,BJP1,BYP1,IDJ,IDH,LL ,BB,YY)
                                                                                  0045
       CALL BESSI(BK, 1., BB, YY, BP, YP, IDH, IDH, II, BB, YY)
                                                                                  0046
                                                                                  0047
       IF(LL.LT.KK)KK=LL
                                                                                  0048
       KMIN=BK#PHB/180.
                                                                                  0049
       IMIN=BK
                                                                                  0050
       NMIN=BK≠PHC/180.
                                                                                  0051
       NMAX=.5+KK+PHC/PHB
       IF(NN.GT.IDC)NN=IDC
                                                                                  0052
                                                                                  0053
       IF(NN.GT.NMAX)NN=NMAX
                                                                                  0054
       IF(NN.LT.1)NN=1
                                                                                  0055
       WRITE(6,4) IMIN, II, KMIN, KK, NMIN, NN
                                                                                  0056
       WRITE(6,5)
                                                                                  0057
       SUMN=(.0,.0)
       BHR(1)=CMPLX(BB(1),-YY(1))/CMPLX(BP(1),-YP(1))
                                                                                  0058
                                                                                  0059
       DO 60 I=2,11
       BHR(I) = CMPLX(BB(I), -YY(I))/CMPLX(BP(I), -YP(I))
                                                                                  0060
                                                                                  0061
       N = I - 1
       SC=SIN(N*PHCR)/(N*PHCR)
                                                                                  0062
```

Fig. 7. The MAIN computer program.

```
0063
    SNC(I)=SC
                                                                             0064
    SUMN=SUMN+BHR(I)*SC*SC
                                                                             0065
    RUM1=AJP(1)+BY1(1)-BJ1(1)*AYP(1)
                                                                             0066
    REN1=AJP(1)*BYP1(1)-BJP1(1)*AYP(1)
    SUML = . O
                                                                             0067
                                                                             0068
    SUMP=.0
    DO 70 K=2.KK
                                                                             0069
                                                                             0070
    BEN(K) = AJP(K) *BYP1(K) - BJP1(K) *AYP(K)
                                                                             0071
    RBES(K)=(AJP(K)*BY1(K)-BJ1(K)*AYP(K))/BEN(K)
                                                                             0072
    GNU=(K-1.)*PI/PHBR
                                                                             0073
    SC=SIN(GNU*PHCR)/(GNU*PHCR)
                                                                             0074
    SGC(K)=SC
                                                                             0075
    SGA(K)=SIN(GNU*PHAR)/(GNU*PHAR)
                                                                             0076
    SUMP=SUMP+SGA(K)*SC/BEN(K)
                                                                             0077
    SUML=SUML+RBES(K)*SC*SC
                                                                             0078
    Z(1)=ETA1*PHBR*(.5*BHR(1)+SUMN)/(ETA*PI)-.5*RUM1/REN1-SUML
                                                                             0079
    2(1)=PHCR*2(1)
                                                                             0080
    V (1)=CMPLX((1./REN1+2.*SUMP)/(AK*BK1),0.)
    JF(NN.EQ.1)GO TO 130
                                                                             0081
                                                                             0082
    DO 120 N=1,NN
                                                                             0083
    MA=2
                                                                             0084
    IF(N.GT.2)MA=N
                                                                             0085
    DO 120 MaMA, NN
    SJN=(.0,.0)
                                                                             0086
                                                                             0087
    DO. 100 I=2, II
                                                                             0088
    CALL GNJ(I, M, PHCR, SNC, GIM)
                                                                             0089
    GIN=SNC(I)
                                                                             0090
    IF(N.GT.1)CALL GNJ(I,N,PHCR,SNC,GIN)
                                                                             0091
100 SJN=SJN+BHR(I)*GIM*GIN
                                                                             0092
    SJL=.0
                                                                             0093
    CJR=.0
                                                                             0094
    DO 110 K=2,KK
                                                                             0095
    CALL GLJ(K,M,PHBR,PHCR,SGC,FKM)
                                                                             0096
    FKN=SGC(K)
    IF(N.GT.1)CALL GLJ(K,N,PHBR,PHCR,SGC,FKN)
                                                                             0097
    IF(N.EO.1)CJR=CJR+FKM*SGA(K)/BEN(K)
                                                                             0098
                                                                             0099
110 SJE=SJL+RBES(K)*FKM*FKN
    L=(N-1) +NN-(N+N-N)/2+M
                                                                             0100
    Z(L)=(ETA1*PHBR*SJN/(ETA*PI)-SJL)*PHCR
                                                                             0101
120 IF(N.EQ.1)V(M)=CMPLX(2.*CJR/(AK*8K1).0.)
                                                                             0102
                                                                             0103
130 CALL SOROT(Z,V,O,1,NN)
    A(1)=-(.0,1.)*PHCR*B(1)/(ETA*PI*CMPLX(BP(1),-YP(1)))
                                                                             0104
    DO 300 I=2, II
                                                                             0105
                                                                             0106
    SC=SNC(I)
    SUL=B(1)*SC
                                                                             0107
                                                                             0108
    IF(NN.EQ.1)GO TO 300
                                                                             0109
    DO 290 N=2,NN
    CALL GNJ(I, N, PHCR, SNC, GIN)
                                                                             0110
290 SUL=SUL+B(N)*GIN
                                                                             0111
300 A(1)=-2.*PHCR*(.0,1.)*SUL/(ETA*PI*CMPLX(BP(I).-YP(I)))
                                                                             0112
    C(1)=(.0,1.)*(2.*AL*PHCR*8(1)*AYP(1)-BYP1(1))/
                                                                             0113
   2(2.*AL*ETA1*PHBR*REN1)
                                                                             0114
    D(1)=(.0,1.)*(BJP1(1)-2.*AL*PHCR*B(1)*AJP(1))/
                                                                             0115
   2(2.*AL*ETA1*PHBR*REN1)
                                                                             0116
    DO 340 K=2.KK
                                                                             0117
    SA=SGA(K)
                                                                             0118
    REN=AL*ETA1*PHBR*BEN(K)
                                                                             0119
    SUL=8(1) * SGC(K)
                                                                             0120
                                                                             0121
    IF(NN.EQ.1)GO TO 330
    DO 320 N=2, NN
                                                                             0122
    CALL GLJ(K,N,PHBR,PHCR,SGC,FKN)
                                                                             0123
320 SUL=SUL+B(N)*FKN
                                                                             0124
```

Fig. 7.

330	C(K)=~SA*BYP1(K)+2.*AL*PHCR*AYP(K)*SUL	0125
	C(K)=(.0.1.)*C(K)/REN	0126
	D(K)=SA+BJP1(K)-2,*AL*PHCR*AJP(K)*SUL	0127
340	O(K)=(.0,1.)*O(K)/REN	0128
	Y11=C(1)*AJJ(1)+D(1)*AYY(1)	0129
	DO 360 K=2,KK	0130
360	Y11=Y11+(C(K)*AJJ(K)+D(K)*AYY(K))*SGA(K)	0131
	WRITE(6,2)Y11	0132
	WRITE(6,5)	0133
	GG≅REAL(Y11)	0134
	NPH=180./DPH+1.5	0135
	DO 400 L=1,NPH	0136
	PH=(L-1)*DPH	0137
	PHR=.0174533*PH	0138
	HZ=(.0,.0)	0139
	C0=(1,,0,)	0140
	DO 390 I=1,II	0141
	N= I - 1	0142
	HZ=HZ+CQ*A(1)*CQS(N*PHR)	0143
390	C0=C0*(.0,1.)	0144
	HAB≑CABS(HZ)/PT	0145
	GAIN=TP*ETA*HAB*HAB/GG	0146
	DB=10.*ALOG10(GAIN)	0147
400	WRITE(6,2)PH, GAIN, DB	0148
	CALL EXIT	0149
	FND	0150

Fig. 7.

APPENDIX II SUBROUTINE BESSI

The subroutines are listed in Figs. 8-11. BESSI is a drastically modified and streamlined version of a program developed by Nelson Ma of the Department of Engineering Mechanics at The Ohio State University. This program calculates Bessel and Neumann functions and their derivatives. The argument must be positive and real. The order is positive and real, and it may be integer or noninteger. For the gamma function, BESSI calls subroutine GAMMA from the IBM 360 scientific subroutine package. The input data are defined as follows:

X argument, greater than zero

ORD order, greater than zero

IDL dimension of BJJ, BYY, BJP and BYP

IDM dimension of BJ and BY

BJ and BY are work arrays for internal use. If ORD is an integer, BJ and BY may have the same names in the calling program as BJJ and BYY to reduce storage requirements. This is illustrated in the third call to BESSI in Fig. 7. The output data are defined as follows:

BJJ(I) $J_{\gamma}(x)$ with I = 1, 2, 3, \cdots N and $\gamma = (I - 1)*ORD$

BYY(I) $N_{y}(x)$

BJP(I) $J_{v}^{i}(x)$

 $BYP(I) N_{3}^{\dagger}(x)$

N maximum value of I

N will not exceed IDL. If IDL and IDM are sufficiently large, N will be determined by the condition that BJJ(N) is less than 10-6 or BYY(N) is greater than 10^6 . Comparison with other subroutines indicates that the output of BESSI may be accurate even when x is as large as 2000. The upper limit on x is not known.

One call to BESSI generates a series of Bessel and Neumann functions with different orders. For example, if ORD = 0.5 the functions will have orders 0, 1/2, 2/2, 3/2, 4/2, 5/2, etc. If ORD = 2, the functions will have orders 0, 2, 4, 6, etc. These are the orders required in boundary-value problems involving wedges and circular-sector cylinders.

BESSI uses the recursion techniques of Reference [5]. For x greater than 10, the phase amplitude-method is employed[6].

In line 39, the user should replace 1.E-38 with the smallest number his computer can handle without underflow. To obtain a few more Bessel and Neumann functions in the series, one may replace 1.E-6 with a smaller number in line 69, and replace 1.E6 with a larger number in line 154.

To obtain the maximum available number of Bessel and Neumann functions in the series, the required dimensions may be estimated as follows when x is greater than one:

IDM = 1.2 x + 100 - 1500/(x + 20)IDL = IDM/ORD.

```
SUBROUTINE BESSI(X.ORD.BJJ.BYY.BJP.BYP.IDL.IDM,N.BJ.BY)
    DIMENSION BJ(1), BY(1), BJJ(1), BYY(1), BJP(1), BYP(1) .
    DATA A.PI/.577215665,3.14159265/
    DATA CO.C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16
   B, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27/
   C.25,.15625,-.375,.1171875,-1.15625,1.875,.952148438E-1,
                                                                         6
   D-2.38671875,14.2265625,-19.6875,-.809326172E-1,-4.10058593,
   E58.2246094,-277.875,354.375,.416666667E-1,-.25,.0125,-.35,
                                                                         8
   F.558035718E-3,-.424107143,3.60267857,-5.625,.30381944E-2.
                                                                         9
   G-.486111111,10.2864583,-58.,78.75/
                                                                        10
                                                                        11
    J=0
                                                                        12
    1F(X.LE.O.)GD TO 1
    IF(ORD.LE.O.)GO TO 1
                                                                        13
                                                                        14
    GD TD 2
                                                                        15
1
    N=J-1
    RETURN
                                                                        16
                                                                        17
    EA=2./X
    INT=ORD+.5
                                                                        18
    IN=1000.*(URD-INT)
                                                                        19
                                                                        20
    TLOG=ALOG(X/2.)
                                                                        21
    PIH=2./PI
                                                                        22
    T2=1./(X*X)
                                                                         23
    PI4=4./PI
                                                                        24
    GAMM1=PIH*(A+TLOG)
                                                                         25
    KMAX=X+10.*(2.*X**.333333+1.)
                                                                        26
    SOPX≃SORT(.5*PI*X)
                                                                         27
    TPX=2./(PI*X)
                                                                         28
10 J=J+1
                                                                         29
    JM=J-1
    FNUP=JM≠URÚ
                                                                         30
                                                                         31
    N=FNUP
                                                                         32
    FNU=FNUP-N
    IF(IN.EQ.O)FNU=.0
                                                                         33
    IF(IN.EQ.0)N=1
                                                                         34
    NP1=N+1
                                                                         35
    1F(NP1.GT.IDM)GO TO 1
                                                                         36
                                                                         37
    MM1 = N-1
                                                                         38
    K=KMAX
    IF(K.LT.NP1 .AND. IN.NE.O)GD TO 1
                                                                         39
                                                                         40
    1 = K
    BJC=.0
                                                                         41
    BJB=1.E-38
                                                                         42
    EB=EA*(I+FNU)
                                                                         43
35 BJA=EB*BJB-BJC
                                                                         44
    IF(I.LE.IDM)BJ(I)=BJA
                                                                         45
    EB=EB-EA
                                                                         47
    BJC≃BJB
                                                                         48
    BJB=BJA
                                                                         49
    1 = 1 - 1
    IF(1.GE.1)GD TO 35
                                                                         50
                                                                         51
    IF(K.GT.IDM)K=IDM
    M=(K-1)/2
                                                                         52
    IF(X.GE.10.)GO TO 59
                                                                         53
                                                                         54
    PHI=FNU+2.
    MR=3
                                                                         55
                                                                         56
    ALF=PHI*BJ(3)+BJ(1)
    DO 39 I=2,M
                                                                         57
                                                                         58
    MO = MO + 2
                                                                         59
    FM2=2#I
                                                                         60
    FM1=1-1
    F1=1
    TEMP=((FNU+FM2)*(FNU+FM1))/(F1*(FNU+FM2-2.0))*PH1
```

Fig. 8. Subroutine BESSI.

```
PH1=TEMP
                                                                         63
                                                                         64
39
    ALF=PHI#BJ(MO)+ALF
    GAMM=GAMMA(FNU+1.)
                                                                         65
    ALF=EA**FNU*GAMM*ALF
                                                                         66
41
                                                                         67
   AJl=1.
    AJ2=1.
                                                                         68
    JAN=0
                                                                         69
    RALF=1./ALF
                                                                         70
    DO 43 1=1,K
                                                                         71
    TELJAN, ED. 11GD TO 43
                                                                         72
    IF(AJ1.LT.1.E-6 .AND. AJ2.LT.1.E-6)JAN=1
                                                                         73
    BJ(I)=BJ(I)*RALF
                                                                         74
    AJ1=AJ2
                                                                         75
    .AJ2=ABS(BJ(II)
                                                                         76
    I = X M I
                                                                         77
43 CONTINUE
                                                                         78
    K=IMX
                                                                         79
    M = (K-1)/2
                                                                         80
    IF(IN.NE.O .AND. IMX.LT.NP1)GO TO 1:
                                                                         81
    GD TO 100
                                                                         82
59
                                                                         83
    KOUNT=1
     GNU=FNU
                                                                         84
61
    AL1=GNU##2-.25
                                                                         85
     A2 =C0 + AL1
                                                                         86
    A4=(C1*AL1+C2)*AL1
                                                                         87
    A6=((C3*AL1+C4)*AL1+C5)*AL1
                                                                         88
    A8=(((C6*AL1+C7)*AL1+C8)*AL1+C9)*AL1
                                                                         89
    A10=((((C10*AL1+C11)*AL1+C12)*AL1+C13)*AL1+C14)*AL1
                                                                         90
    B=(((A10*T2+A8)*T2+A6)*T2+A4)*T2+A2
                                                                         91
     BNU=B#T2+1.0
                                                                         92
    ANU=BNU/SQPX
                                                                         93
     A2=.5*AL1
    A4=(C15*AL1+C16)*AL1
                                                                         95
    A6=((C17*AL1+C18)*AL1+.75)*AL1
                                                                         96
    A8=(((C19*AL1+C20)*AL1+C21)*AL1+C22)*AL1
                                                                         97
    A10=((((C23*AL1+C24)*AL1+C25)*AL1+C26)*AL1+C27)*AL1
                                                                         98
    B=(((A10*T2+A8)*T2+A6)*T2+A4)*T2+A2
                                                                         99
     TPHI=B*T2+1.0
                                                                        100
    PHI=TPHI*X-(GNU+,5)/PIH
                                                                        101
    F1=ANU*COS(PHI)
                                                                        102
    Y1=ANU#SIN(PHI)
                                                                        103
    IF(KOUNT.GT.1)GO TO 65
                                                                        104
    FSAVE=F1
                                                                        105
    BY(1)=Y1
                                                                        106
     GNU=FNU+1.0
                                                                        107
     KOUNT=2
                                                                        108
    GO TO 61
                                                                        109
    F2=F1
65
                                                                        110
     BY(2)=Y1
                                                                        111
     F1=FSAVE
                                                                        112
    ALF=BJ(2)/F2
                                                                        113
    IF(ABS(F1).GT.ABS(F2))ALF=BJ(1)/F1
                                                                        114
    GO TO 41
                                                                        115
100 IF(X.GE.10.)GD TO 150
                                                                        116
    ARG=FNIJ*PI
                                                                        117
    GARG=GAMM**2
                                                                        118
    IF(FNU.EO.O.)GO TO 116
                                                                        119
    TERM=(1./PI)*EA**(2.*FNU)
                                                                        120
    GAM1=COS(ARG)/SIN(ARG)-TERM+(GARG/FNU)
                                                                        121
    GAM2=2.0*TERM*GARG*(FNU+2.0)/(1.0-FNU)
                                                                        122
    GO TO 117
                                                                        123
116 GAM1=GAMM1
                                                                        124
```

Fig. 8.

```
GAM2=PI4
                                                                       125
117 BY(2)=-(1./PI)*BJ(1)*EA**(1.+2.*FNU)*GARG+(GAM1-GAM2/2.)*BJ(2) 126
    YNU=GAM1*BJ(1)
                                                                       127
     TXNU=3.0*FNU/X
                                                                       128
    AB=ABS(BJ(1))-0.000005
                                                                       129
     MP1=M+1
                                                                       130
     12=1
                                                                       131
     DO 121 1=2, MP1
                                                                       132
    12=12+2
                                                                       133
    FI = I
                                                                       134
    FIM=I-1
                                                                       135
    F12=2*I
                                                                       136
    DENOM=FI*(FI-FNU)*(FNU+F12-2.0)
                                                                       137
   GAM3=(FNU+F12)*(2.0*FNU+F1M)*(FNU+F1M)/DENOM
                                                                       138
    GAM3=-GAM3*GAM2
                                                                       139
    YNU=GAM2*BJ(12)+YNU
                                                                       140
    IF(AB.GT.O.)GO TO 120
                                                                       141
    E1=TXNU≠GAM2
                                                                       142
    BY(2)=E1*BJ(12)+BY(2)
                                                                       143
    IF(12.GE.K)GN TD 130
                                                                       144
                                                         1 1 800
    E1=(GAM2-GAM3)/2.
                                                                       145
    BY(2)=E1 \pm BJ(12+1)+BY(2)
                                                                       146
120 GAM1=GAM2
                                                                       147
121 GAM2=GAM3
                                                                       148
130 BY(1)=YNU
                                                                       149
    IF(AB.GT.O.)BY(2)=(YNU*BJ(2)-TPX)/BJ(1)
                                                                       150
150 JAN=0
                                                                       151
    ABY=ABS(BY(2))
                                                                       152
    MAX=NM1
                                                                       153
    IF(IN.EQ.O)MAX=K
                                                                       154
    DO 160 I=1, MAX
                                                                       155
    IF(JAN.E0.1)60 TO 160
                                                                       156
    ]MX = 1+2
                                                                       157
    IF(ABY.GT.1.E6)JAN=1
                                                                       158
    BY(I+2)=EA*(I+FNU)*BY(I+1)-BY(I)
                                                                       159
    ABY=ABS(BY(I+2))
                                                                       160
160 CONTINUE
                                                                       161
    IF(IN.EQ.0)GO TO 300
                                                                       162
    IF(IMX.LT.NP1)GO TO 1
                                                                       163
    BJJ(J)=BJ(NP1)
                                                                       164
    BYY(J)=BY(NP1)
                                                                       165
    IF(J.GT.1)GO TO 210
                                                                       166
    BJP(1)=-BJ(2)
                                                                       167
    BYP(1) = -BY(2)
                                                                       168
    GO TO 220
                                                                       169
210 FAC=FNUP/X
                                                                       170
    BJP(J)=-FAC#BJ(NP1)+BJ(N)
                                                                       171
    BYP(J)=-FAC*BY(NP1)+BY(N)
                                                                       172
220 IF(J.LT.IDL)GO TO 10
                                                                       173
    N = .1
                                                                       174
    RETURN
                                                                       175
300 BJJ(1)=BJ(1)
                                                                       176
    BYY(1) = BY(1)
                                                                       177
    BJP(1)=-BJ(2)
                                                                       178
    BYP(1) = -BY(2)
                                                                       179
    N≖K
                                                                       180
    IF(IMX.LT.K)N=IMX
                                                                       181
    N=1+(N-1)/INT
                                                                       182
    1F(N.GT.IDL)N=IDL
                                                                       183
    DO 350 I=2,N
                                                                       184
    L=1+(1-1) = 1NT
                                                                       185
    LM=L-1
                                                                       186
```

Fig. 8.

	BJJ(I)=BJ(L)	•	187
	BYY(I)=BY(L)		188
			189
	FAC=LM/X		190
	BJP(I) = -FAC + BJ(L) + BJ(LM)	•	191
350	BYP(I)=-FAC*BY(L)+BY(LM)		–
	RETURN		192
	END		193

Fig. 8.

```
0001
    SUBROUTINE SOROT(C.S.IWR. 112.NEO)
                                                                                0002
    COMPLEX C(1),S(1),SS
                                                                                0003
    FORMAT(1X, 115, 1F10.3, 1F15.7, 1F10.0, 2F15.6)
2
                                                                                0004
    FORMAT(1HO)
                                                                                0005
    N=NEQ
    16(112.EQ.2)GO TO 20
                                                                                0006
                                                                                0007
    C(1)=CSQRT(C(1))
                                                                                8000
    DO 4 K=2.N
                                                                                0009
    C(K) = C(K)/C(1)
                                                                                0010
    DO 10 I=2.N
                                                                                0011
    IM0 = I - 1
                                                                                0012
    IPO=I+1
                                                                                0013
    ID = (I-1)*N-(1*I-I)/2
                                                                                0014
    I 1 = I D + I
                                                                                0015
    00 5 L=1, IMO
                                                                                0016
    LI = (L-1)*N-(L*L-L)/2+I
                                                                                0017
    C(II)=C(II)-C(LI)*C(LI)
                                                                                0018
    C(II)=CSQRT(C(II))
                                                                                0019
    IF(IPO.GT.N)GO TO 10
                                                                                0020
    00 8 J=IPO.N
                                                                                0021
    L+01=L1
                                                                                0022
    DO 6 M=1, IMO
                                                                                0023
    S(M-M*M) = (M-1) \neq M = (M*M-M)/2
                                                                                0024
    I + GM = IM
                                                                                 0025
    MJ=MD+J
  6 C(IJ)=C(IJ)-C(MJ)*C(MI)
                                                                                0026
                                                                                 0027
    C(IJ)=C(IJ)/C(II)
                                                                                 8500
    CONTINUE
10
                                                                                 0029
    S(1)=S(1)/C(1)
                                                                                 0030
    DO 30 I=2,N
                                                                                 0031
    IMD = I - 1
    00 25 L=1.1MO
                                                                                 0032
                                                                                 0033
    LI=(L-1)*N-(L*L-L)/2+I
                                                                                 0034
25 S(1)=S(1)-C(L1)*S(L)
    II = (I-1)*N-(I*I-I)/2+I
                                                                                 0035
                                                                                 0036
30 S(1)=S(1)/C(11)
                                                                                 0037
    NN=((N+1)*N)/2
                                                                                 0038
    S(N)=S(N)/C(NN)
                                                                                 0039
    NM\Omega = N-1
                                                                                 0040
    DO 40 I=1,NMO
                                                                                 0041
    K=N-1
                                                                                 0042
    KPO=K+1
                                                                                 0043
    KD = (K-1) * N - (K * K - K) / 2
                                                                                 0044
    DO 35 L=KPO,N
                                                                                 0045
    KL=KD+L
                                                                                 0046
35 S(K)=S(K)-C(KL)*S(L)
                                                                                 0047
     KK=KD+K
                                                                                 0048
40 S(K)=S(K)/C(KK)
                                                                                 0049
     IF(IWR.LE.O) GO TO 100
    WRITE(6,3)
                                                                                 0050
                                                                                 0051
    CNOR=.0
                                                                                 0052
    DO 50 I=1,N
                                                                                 0053
     SA=CABS(S(I))
                                                                                 0054
50 IF(SA.GT.CNOR)CNOR=SA
                                                                                 0055
     IF(CNOR.LE.O.)CNOR=1.
                                                                                 0056
    DD 60 I=1.N
                                                                                 0057
     $$=$(I)
                                                                                 0058
     SA=CABS(SS)
                                                                                 0059
     SNUR=SA/CNOR
                                                                                 0060
     PH≃.0
     IF(SA.GT.O.)PH=57.29578*ATAN2(A1MAG(SS),REAL(SS))
                                                                                 0061
                                                                                 0062
60 WRITE(6,2)1, SNOR, 5A, PH, SS
```

Fig. 9. Subroutine SQROT.

WRITE(6,3) 100 RETURN END 0063 0064 0065

Fig. 9.

SUBROUTINE GLJ(LL,JJ,PHBR,PHCR,SGC,FLJ)	0001
DIMENSION SGC(150)	0002
DATA P1/3.14159/	0003
J =JJ-1	0004
SGJ=(-1)**J	0005
t=Lt~1	0006
FLJ=.5	0007
GNU=L*P1/PHBR	8000
SC=SGC(LL)	0009
GNUS=GNU*GNU	0010
TEST=ABS(GNU-J=PI/PHCR)	9011
DEN=GNUS-(J*PI/PHCR)*+2	0012
1F(TEST.GTOO1)FLJ=SGJ*GNUS*SC/DFN	0012
RETURN	0014
END	0015
	0015

Fig. 10. Subroutine GLJ.

SUBROUTINE GNJ(M,JJ,PHCR,SNC,FNJ)	0001
DIMENSION SNC(150)	0002
DATA PI/3.14159/	0003
J=JJ-1	0004
SGJ=(-1)**J	0005
N = M - 1	0006
NS=N*N	0007
SC=SNC(M)	0008
FNJ=.5	0009
TEST=ABS(N-J*PI/PHCR)	0010
DEN=NS-(J*PI/PHCR)**2	0011
IF(TEST.GT001)FNJ=5GJ*NS*SC/DEN	0012
RETURN	0013
END	0014

Fig. 11. Subroutine GNJ.

APPENDIX III SUBROUTINE SQROT

This subroutine considers the matrix equation ZI = V which represents a system of simultaneous linear equations. If the square matrix Z is symmetric, SQROT is useful for obtaining the solution I with V given. NEQ denotes the number of simultaneous equations and the size of the matrix Z.

On entry to SQROT, S is the excitation column V. On exit, the solution I is stored in S. Let Z(I,J) denote the symmetric square matrix. On entry to SQROT, the upper-right triangular portion of Z(I,J) is stored by rows in C(K) with

(37)
$$K = (I - 1)*NEQ - (I*I - I) / 2 + J.$$

If Il2 = 1, SQROT will transform the symmetric matrix into the auxiliary matrix (implicit inverse), store the result in C(K) and use the auxiliary matrix to solve the simultaneous equations. If Il2 = 2, this indicates that C(K) already contains the auxiliary matrix.

The transformation from the symmetric matrix to the auxiliary matrix is programmed above statement 10, and the solution of the simultaneous equations is programmed in statements 20 to 40. If IWR is positive, the program below statement 40 will write the solution.

SQROT uses the square root method described in Reference [4]. The original symmetric matrix Z and the upper triangular auxiliary matrix A are related by

$$(38) Z = A' A$$

where A' is the transpose of A.

The determinant of the symmetric matrix Z may be obtained by squaring the product of the diagonal elements in the auxiliary matrix.

SQROT was developed by Dr. Robert G. Wickliff Jr., now with Hewlett Packard, Colorado Springs, Colorado 80907.

ACKNOWLEDGMENT

The experimental data presented herein were measured by Melvin C. Gilreath at NASA Langley Research Center. His kind permission to reproduce these antenna patterns is truly appreciated.